Space Medicine: Past, Present and Future

J.D. Polk, DO, MS, MMM, CPE, FACOEP
Deputy Chief Medical Officer
Chief, Space Medicine
NASA Johnson Space Center
Space Shuttle Endeavour docked to the Destiny laboratory of the International Space Station.
Don’t stand here during launch
Space Motion Sickness (SMS) or Space Adaptation Syndrome
Visual-Intracranial Pressure

- What is the problem?
 - Optic Disc Edema, Globe Flattening, Choroidal Folds, Hyperopic Shifts and Raised Intracranial Pressure has occurred in Astronauts During and After Long Duration Space Flight

10/17/2011 Polk
Panoptic Fundoscopy
Increased Optic Nerve Sheath Diameter seen on-orbit
Flattening of Posterior Wall – most likely location of Choroidal Folds if any exist
Elevation of Optic Disc
Papilledema (red arrow)
Flattened globe (blue arrows)
Distended optic sheath (yellow arrow)
Cardiovascular Effects

• Increase in ventricular size initially
 – Major increase in preload
 – Inhibition of erythropoietin
 – Fluid shift into the upper thorax and head

• Increased GFR prompts a diuresis
 – Eventual decrease in preload
 – Down regulation of erythropoietin causes a spaceflight anemia.
Fluid Shift

a. On Earth, gravity exerts a **downward force** to keep fluids flowing to the lower body (A)

b. In space, the fluids tend to **redistribute** toward the chest and upper body (B). This is responsible for the face congestion. At this point, the body detects a “flood” in and around the heart

c. The body rids itself of this perceived “excess” fluid. The body functions with less fluid and the heart becomes **smaller** (C)

d. Upon return to Earth, gravity again pulls the fluid **downward**, but there is not enough fluid to function normally on Earth (D)
Neurovestibular

Vestibular Organs

Proprioception

Muscles

Tendons and Joints

Vision

Skin
Vertical Pursuit Tracking with Head and Eye

L - 10
EYE
HEAD
GAZE
TARGET

R + 0
EYE
HEAD
GAZE
TARGET

20°
1 Sec
Musculoskeletal

- Acute –
 - Postural change with stretching of tendons and ligaments.
 - Increase in on-orbit height by 2-6 cm
Effects of Spaceflight on Muscle

- Decrease in **body mass**
- Decrease in **leg volume**
- Atrophy of the **antigravity** muscles (thigh, calf)
 - decrease in leg strength
 - **extensor** muscles more affected than flexor muscles

- Data showed an increase in number of **Type II**, “fast twitch” muscle fibers (those which are useful for quick body movements but more prone to fatigue)
Musculoskeletal

• Chronic –
 – Decrease in weight bearing causes muscle atrophy and bone demineralization, 1% - 2.4% per month in lower extremities and spine, with increased urine and fecal calcium
 • A direct effect of microgravity is the loss of mechanical stress on the skeletal system

Loss of Bone Mineral Density

Bone Density Loss of 1-2.4% per month in the weight bearing areas, with the hips and lumbar spine being the highest areas. But density is only ½ of the story…matrix architecture changes are also a concern, ie- Quality as well as quantity of bone.
Immune System

• Depression of lymphocyte function affects at least 50% of space crew members
 – Decreased lymphocyte response to mitogens in cosmonauts after space flight was reported for the first time in the early 1970s by Soviet immunologists

Hematopoietic system

• Reduction in Circulating Red Blood Cell mass
 – “Space Flight Anemia”

Behavioral/Psycho-Social

Changes in crew mood, morale, and circadian rhythm

- **Symptoms** - Fatigue and irritability
- **Causes**
 - Work load
 - Sleep habits and facilities
 - Crew personalities, “crew space”, and cultural differences
 - Temperature
 - Noise
 - Odors
 - Atmosphere
 - Diet
 - Lack of family contact
Radiation

• Exposure based on orbital altitude/inclination, duration, and solar activity

• Crewmembers are radiation workers
 • Limits for mission and career exposure are set by the National Council on Radiation Protection

• As Low As Reasonably Achievable (ALARA) principle for mission planning

• Exposure monitored by active and passive dosimeters
Countermeasures

• Cardiovascular
 – Fluid loading
 – Lower Body Negative Pressure
 – G-suits and Liquid Cooling Garment
 – Exercise
 – Medication
Behavioral Health and Performance

Team Building Training

10/17/2011

Communications

“Care Packages”

Polk
Levels of Care

- Sure you can do major surgery. It is feasible. But should you?
- Will there be prophylactic surgery on long duration Moon and Mars explorers (ie: appendectomy)?
- Will your consumables limit your ability to provide critical care?
Pragmatic Tenets

• Mass
• Power
• Volume
• Time
• Money
• Risk
Application of the Pragmatic Tenets

10/17/2011 Polk
Futuristic?

Actually, it has already been done.

EKG in Heads Up Display

CPOD, NASA Ames

NASA Houghton Mars Project
Questions?
References